金准人工智能 2018年边缘智能白皮书(上)

金准人工智能 2018年边缘智能白皮书(上)
2018年08月26日 09:56 人工智能科技

前言

由于各类信息技术的发展,尤其是物联网产业进入规模化落地的初期,边缘计算已经提上了产业界议事日程,而随着人工智能在边缘计算平台中的应用,加上边缘计算与物联网“端-管-云”协同推进应用落地的需求不断增加,边缘智能成为边缘计算新的形态,使能物联网应用。

“将在外,君命有所不受”是非信息时代边缘智能的一种表现形式,主要是针对现场瞬息多变的战况产生的。而物联网的各类业务应用场景就像多变的战况一样,直接驱动边缘智能的进步,这方面主要是各类网络传输场景和应用特征产生的场景,对边缘智能形成直接需求;另外,边缘智能产业链上游各参与方投入大量资源进行技术研发,从供给方面给边缘智能打下基础。

边缘智能产业生态架构已形成,主要有两类参与者,第一大类涉及到边缘智能技术、产品、解决方案等核心业务的研发、生产、经营、应用闭环的流程,涵盖边缘载体供应商、边缘业务运营商、服务提供商和最终用户;第二大类主要是为边缘智能这一闭环流程提供研发、标准制定、产业组织等服务,对应的是一些科研机构开展边缘智能各个课题研发,标准化组织推出边缘智能端到端标准和参考架构,以及行业协会、联盟促进整个产业合作共赢,降低产业的碎片化。

目前,边缘智能已经在智能城市、智能工业、智能社区、智能家居、车联网等大量的垂直行业中形成示范应用,给垂直领域带来新的价值,产业链各方也在探索B2B2C、B2B等多种类型的商业模式。不过,边缘智能依然处于发展的初级阶段,技术、业务、商业模式等各方面的挑战仍然具有不确定性,接下来需要在标准化、产业联盟、场景驱动、产业链协同、安全隐私等方面做好工作,推动边缘智能的规模化落地。

本报告在物联网的框架和视角下,对边缘智能产业进行解读,希望对业界能够起到一定参考作用。

一、边缘智能概述

近几年,随着云计算、大数据、人工智能等技术的快速发展,以及各种应用场景的不断成熟,越来越多的数据需要上传到云端进行处理,给云计算带来的更多的工作负载,同时,由于越来越多的应用需要更快的反应速度,边缘智能应运而生。未来,随着百亿级别的设备联网,大部分数据都将在靠近数据的一侧完成收集、处理、分析、决策的过程。本章将会从边缘智能产生的背景、发展过程等展开论述。

1.1边缘计算产生的背景

回顾科技的发展史,一种技术、产品得以出现,主要原因是当下的技术、产品已然不能适应时代的发展。边缘智能也不例外,从我们进入物联网时代开始,联网设备、海量数据、超低延时等需求都对现有的云计算模式提出了挑战,如果沿用现有的技术就会成为万物互联时代的瓶颈,因此需要新的计算模式。

(1)物联网连接数快速增长

全球主要公司、权威机构都给出了各自的网联设备数量预测,根据Machina Research给出的数据显示,其预测2025年全球物联网连接数将增长至270亿个,蜂窝连接个数将达到220亿个,大部分将基于LTE。

图1全球物联网连接数

如此多的物联网设备都处在远离云计算的边缘侧,物联网设备不仅仅是一个数据收集器,更是执行器,以目前的现状来看,物联网设备将采集到的数据上传到云计算中心,经过一系列的计算与分析之后,再传达到物联网设备,云计算的处理能力尚可。但是,当物联网设备的数量达到百亿、千亿之后,“偏远”的云计算在处理这些数据的时候,其能力就会显得捉襟见肘。

在此情况下,边缘智能可以实现在设备侧、数据源头的数据收集与决策。这样既可以减轻云计算的计算负载,也能完成某些场景对数据处理与执行的苛刻要求。有研究机构预测,未来会有超过一半的数据在边缘进行处理,甚至更高,当然这并不是说边缘计算会吃掉云计算,我们也不这么认为,云计算和边缘计算的关系应该是互补的。

(2)网络流量呈现持续、快速增长

物联网时代,一切的发展都是建立在数据的快速增长之上,通过对海量数据分析才可以实现各种智能场景。根据思科的预测显示,2021年,全球网络流量将会达到278EB/月,而这一数据在2016年还只有96EB/月。

图22016-2021年全球月均网络流量

2021年,全球月均网络流量将会达到2016年的三倍,年复合增长率为24%,可以说每天都会产生大量的数据。正如前文所说,物联网时代将会有几百亿的联网设备,因此,其数据将会呈现分散性、碎片化的特点,云计算虽然有强大的数据处理能力,但是在面对海量的数据以及网络带宽带来的阻碍之时,云计算并不能实现全面的计算覆盖,而边缘计算就可以极大的缓解云计算的压力。

此外,与网络流量持续增长不同,网络带宽呈现阶梯上升的现状,因此,网络带宽的增长速度远远比不上流量、数据的增长速度。而从目前5G建设的步伐和预算来看,全面实现5G覆盖不是一蹴而就的事情,还需要一定的时间,并且,由于频谱的问题,5G覆盖的范围比4G小,这就需要重建很多5G基站,资金成本是一个大问题。综合技术与资金方面的考量,网络带宽带来的瓶颈问题短时间内很难解决。

大量的数据需要处理,很多场景需要实时的决策,云计算并不能完全满足市场的需求,边缘计算在这方面具有得天独厚的优势,即靠近数据侧,又有计算能力。并且,不是所有的数据都需要上传到云端,但是这些数据又对边缘设备的功能执行有着重要的作用。思科在2015-2020年全球云指数指出,2020年全球设备产生的数据中,只有10%是关键数据,其余90%都是临时数据,无需长期存储。基于以上因素,边缘计算可以极大的缓解网络带宽和云计算中心的压力,增强本地服务的响应效率。

(3)业务需求对技术提出新的挑战

技术的进步往往是以需求为导向,云计算、边缘计算的产生都是与各类业务的需求息息相关。以智能驾驶为例,汽车对时延的要求以毫秒为标准,从目前的技术发展,以及智能驾驶的需求来看,边缘计算可以在汽车高速移动的前提下提供IT服务环境和计算能力,还可以减少对网络资源的占用,增强实时通信能力,在极低时延的情况下完成数据处理和执行服务。

虽然,智能驾驶的实现需要多种技术同时推动,比如定位导航技术、环境感知能力、自动控制技术等,但是作为整合这些技术的边缘计算能力才是实现智能驾驶关键一环。

汽车要实现真正的智能化,就必须时刻对周围的数据进行读取与处理,在高速行驶的状态下,根据早年谷歌在无人驾驶方面取得的数据显示,智能驾驶汽车每秒会产生1GB的数据,处理这么多的数据,只靠云计算是不够的。更何况,未来所有的汽车都会实现智能化,面对百万、千万级的汽车数量,只靠数百公里之外的云计算中心不能同时处理如此多的数据,加之网络阻塞,汽车可能在数秒之后才会获得正确的指令,但为时已晚。这就需要能够在汽车端实现数据处理并执行的技术,由于边缘计算靠近数据源头,又具备轻量级云计算的能力,可以达到汽车智能化的时延要求。

1.2边缘计算问世

随着物联网连接数、网络流量的快速增长,以及各种场景的需求逐渐增多,正在催生新技术——边缘计算等的不断革新。加之云计算的短板问题逐渐显现,因此科技公司都在各自的领域“嵌入”边缘计算能力,对边缘计算的定义也有着不同的表述,但都大同小异。

1.2.1边缘计算定义及特点

欧洲电信标准协会(ETSI)给出的定义是,多接入边缘计算是在靠近人、物或数据源头的网络边缘侧,通过融合了网络、计算、存储、应用等核心能力的开放平台,就近提供边缘智能服务,来满足行业数字化在敏捷联接、实时业务、数据优化、应用智能、安全与隐私保护等方面的关键需求。

ARM官方也曾给出这样的解释,他们认为边缘计算指的是靠近物或数据源头的网络边缘侧,融合网络、计算、存储、应用核心能力的开放平台,就近提供边缘智能服务,满足行业数字化在业务实时、业务智能、数据聚合与互操作、安全与隐私保护等方面的关键需求。该定义也被诸多公司、机构认可,比如边缘计算产业联盟,其在其第一版白皮书给出的边缘计算定义就与ARM的相同。

当然,不同的参与方会从各自的角度定义边缘计算,除了ETSI、ECC给出的上述定义,电信领域也提出了移动边缘计算(MEC)的概念,这里的边缘指的是骨干网络的边缘,如基站等。

金准人工智能专家认为,边缘计算不仅仅是对操作系统、开发环境、网络协议、外围硬件等软硬件的“边缘化”,更重要的是发现另一种高效的,与云计算形成协同效应的场景化的计算方式,近场计算或许是一种更为贴切的表述方式。基于对边缘计算定义的理解,以及其在新场景下发挥的功能,我们可以把边缘计算的特点归纳为以下几个方面。

(1)数据处理实时性

实时性是由于边缘计算天生的能力决定的,由于靠近物与数据源头,或者说其整合了数据采集、处理、执行三大能力,使其能够避免一些数据上传下达产生的时延弊端,可以在业务允许的范围完成对数据、软硬件的适配,提升本地物联网设备的处理能力和响应速度。

(2)业务数据可靠性

基于安全的数据才会有可靠的业务,众多的边缘计算服务就意味着庞大的服务加密协议,与现有的云计算数据传输状态类似,当数据从一个服务中心传输到另一个服务中心,会有各种协议的支持和数据加密方式的保障。同样,百亿级的边缘计算服务设备之间的数据传输更应该对数据的安全与隐私提出保障。在数据安全的基础上,业务才会有可靠的表现。由于边缘计算可以在广域网发生故障的情况下,也能够实现局域范围内的数据服务,进而实现本地业务的可靠运行。

(3)应用开发多样化

我们知道,未来会有一半以上的数据在其源头进行处理,也会有诸如工业制造、智能汽车、智能家居等多样的应用场景。用户可以根据自己的业务需求自定义物联网应用,这就好比我们在安装office过程中会有多种的安装选项。此外,需求的多样化必然会带来研发的多样化,现在设备公司、运营商、系统集成商、互联网公司都在从各自的角度,利用自己的能力介入边缘计算。

图3边缘计算特点

1.2.2边缘计算与云计算

对于云计算,维基百科给的这样的解释,云计算是基于网络提供的按需的、共享的、可配置的计算以及其他资源。从计算方式上来讲,云计算是云+端的模式。用户的个人智能客户端通过网络连接到云上,从而与云端的“云”共同形成一个综合的平台。

之所以会出现边缘计算,是由于云计算在应对物联网场景的时候出现服务能力不足的现象。云计算采用集中式的数据管理方式,面对分散的、碎片化的万物互联场景,应用服务需要在低时延、高可靠以及保证数据安全的前提下完成,云计算并不能满足这些要求。

(1)低时延

物联网环境下,边缘设备会产生大量实时数据,这些数据需要实时的处理,由于云计算的数据处理能力和所处的“地理位置”,不能满足这一要求,而随着网络流量的逐渐增加,云计算能力也将达到其瓶颈,进而制约物联网业务的发展。

(2)数据安全

从目前的现状来看,当用户浏览网站购买服务的时候,用户的隐私数据会上传至云端,此外在工业生产中,工业设备采集到的数据也会上传,由于这些数据是集中式的管理,就会增加数据泄露的风险。

(3)能耗

随着云计算中心存储和处理的数据越来越多,为了满足其服务能力,需要大量的能耗,加之维持计算中心温度所产生的能耗比计算服务本身所需要的更多,而降低云计算中心的负载可以达到降低能耗的目的。

当然,云计算所固有的问题并不意味着云计算会被边缘计算取代,二者应该是一种互补的关系,云计算可以在非实时的数据分析方面、数据模型的训练过程中发挥特长,边缘计算可以很好的处理云计算在某些方面所暴露的问题,比如时延、能耗,可以利用云端模型服务本地业务。二者的结合所产生的精细化计算能力可以为未来多样化的物联网业务提供合理的支撑。

1.3从边缘计算到边缘智能

不论是云计算还是边缘计算,其关注重点都是数据的处理与输出,做个比喻,云计算和边缘计算可以认为是在象牙塔里学到的理论知识,但是理论终究要运用到实践中,实践不是简单的套用理论,更重要的是能够解决生活生产中所遇到的实际问题。

对边缘计算也是同样的道理,与人工智能结合,让每个边缘计算的节点都具有计算和决策的能力。可以这样理解,边缘智能(EI)就是在业务层、终端侧部署人工智能。

边缘智能是边缘计算发展的下一个阶段,边缘计算是打破云计算不足的一种手段,而边缘智能则更注重与产业应用的结合,促进产业的落地与实现,这也是本报告的核心内容。

与边缘计算相比,边缘智能除了拥有更高的安全性、更低的功耗、更短的时延、更高的可靠性、更低的带宽需求以外,边缘智能可以更大限度的利用数据,让数据变得更有价值,与云计算、边缘计算相比,边缘智能可以更进一步的缩减数据处理的成本。

(1)边缘智能让数据变得更有价值

根据麦肯锡的调查发现,虽然某工业现场安装了成千上万的传感器,但是决策时使用的数据却只有1%。这其中40%的数据没有保存,剩余60%的数据也只是离线保存在采集终端,只依靠1%的数据并不能实时的分析和决策。

(2)边缘智能帮助企业缩减成本

金准人工智能专家研究发现,大部分边缘设备与云端相距很远,当边缘与云端的距离减少到322公里的时候,数据处理成本将缩减30%,当两者的距离缩减到161公里的时候,数据处理成本将缩减60%,而当边缘具备人工智能分析能力的时候,这一数字还有进一步缩减的空间。

图4数据处理成本缩减(%)结果

我们可以看到从云计算、分布式计算,到边缘计算,再到边缘智能,计算方式正在从云计算落实到贴地计算,边缘计算将轻量化的云计算与设备端结合,而边缘智能则是将边缘计算与用户、业务结合,边缘智能不是简单的把边缘计算搭建起来,更是对管道能力的整体提升,是物联网应用的使能者。

二、业务和技术视角下的边缘智能

边缘智能之所以被业界提上议事日程,很大程度上源于供需双方的各类条件成熟或者已经具备应用落地条件。从需求方来看,由于物联网产业的高速发展,各类创新型业务需要边缘智能的助力才能实现落地;从供给方面来看,一些能够支撑形成边缘智能产品、平台和解决方案相关技术已经成熟,还有针对不少该领域的技术成为业界研发的重点,来满足业务发展带来的需求。因此,业务和技术构成了边缘智能需求和供给的因素,本章对这两方面进行研究。

2.1业务场景需求驱动的边缘智能

随着移动互联网、物联网产业的高速发展,大量的业务场景对边缘智能已经提出了明确的需求,且开始在应用中落地。万物互联的愿景虽然还未实现,但业界已经有针对性地规划未来的业务场景,根据业务场景的需求来设计边缘智能的各项支撑性技术和方案,可以说业务场景需求是核心导向。总体来说,驱动边缘智能发展的业务场景主要包括两个方面,即网络传输的场景和应用特征产生的场景,从而形成对边缘智能的需求。

2.1.1网络传输的场景

正如本报告前文所述,物联网业务对各类有线、无线网络需求和依赖性很强,在很多情况下网络传输的场景往往成为业务落地的瓶颈,因此需要针对这些场景部署边缘智能平台和方案。

(1)异构网络的场景

由于面对着复杂的环境,完整的物联网解决方案往往采用了多种网络通讯技术,来保障业务连续性。目前,不存在一种网络技术标准可以同时涵盖各种距离和不同网络性能的要求,即将商用的5G网络具有很强的包容性,融合大量不同的通信技术标准,但依然难以涵盖所有物联网应用需要的通信场景。

近年来,无线通信技术的进展为物联网通信层带来了很多活力,我们以网络覆盖要求和网络性能要求两个指标来考察网络需求场景,会形成如下矩阵形态:

图5物联网无线网络场景矩阵

目前,大量物联网场景由于业务局限在小范围内,采用WiFi、蓝牙、Zigbee等短距离通信的技术,如智能家居、智能楼宇、智能照明、可穿戴设备等,所有采用短距离通信的物联网终端、传感器等节点均需要通过网关等枢纽类设备进行回传才能到达云端,这些枢纽设备就成为边缘智能平台运行的天然载体。而近年来兴起的低功耗广域网络(LPWAN)则是为广泛分布、免维护、低频小包数据传输场景而生的,不过也存在基于授权频谱和非授权频谱的技术,各类技术构成了传输网环节的差异,而相应设备数据回传至云端还是需要通过基站设备来进行;其他基于授权频谱的蜂窝网络技术,虽然具有统一的技术标准,但所有节点数据仍然需要基站进行回传至云端或服务器,与LPWAN类似,无线接入网之间或基站侧可以作为一个数据计算、处理的初步场所,形成边缘智能的载体,这也是移动边缘计算(MEC)的组成部分。

不仅仅是这些常见的无线通信,一些特殊场景会采用有线通讯连接,或自身所在行业通讯协议,如工业场景中最为流行的Modbus、HART、Profibus等协议,满足工业现场数据传输的需求,而这些场景中通讯协议更为复杂和碎片化,大量数据需要在现场进行处理后直接执行操作,且回传至云端前也需要“中枢”类设备进行协议转换,这些中枢类设备也往往成为边缘智能的载体。

图6异构网络通信需要“中枢”设备

从业务需求角度看,有些场景确实融合了多种通信技术,比如一个园区解决方案中对于园区内部工厂内部采用工业通讯方式,而对于楼宇节能管理采用Zigbee、蓝牙等短距离方案,对园区各类资产管理采用LPWAN技术。当需要一个园区整体解决方案时,所有的数据均需汇集到一个平台上,而在汇集到平台之前,通过各类通信技术连接的终端、传感器节点数据之间存在的差异,在靠近数据源的位置部署智能化节点就很有意义。另外,根据IHS的数据,当前有80%以上的连接是非IP类连接,需要网关等边缘智能类设备与IP类连接进行数据交互。金准人工智能专家预计到2020年,90%的物联网应用都会用到物联网网关。

所以说,不同通信技术之间需要实现兼容性,需要中间设备、平台以及相关软件技术进行“翻译”。这方面不少工作就放在边缘侧进行,利用边缘侧嵌入式终端的存储、计算、通信能力,实现异构通信技术的数据融合,形成部署边缘智能的必要条件。正如前文所述,各类通信协议数据回传途中,均有相应的软硬件节点作为数据的一个“枢纽”,而这个“枢纽”构成天然的边缘智能部署载体,形成边缘智能的充分条件。因此,物联网的发展形成异构网络的场景直接驱动边缘智能的发展。

(2)网络资源受限的场景并不陌生,普通用户也常常会碰到类似的情况,比如我们在大型体育比赛、演唱会等场所时,因为小区容量有限,短时间内数据上下行需求过高,手机往往没有信号。在物联网时代,一方面海量的连网设备数量,另一方面不少设备产生数据的速度飞快,对网络资源形成压力。总体来说,网络资源受限的场景包括带宽资源不足和突发的网络中断场景。

带宽资源不足和终端产生数据量剧增往往同步发生,互联网业务范围普及,视频业务由高清向超清演进,未来虚拟现实、增强现实等技术给人们身临其境的业务体验,这些业务将带来流量爆炸式增长,业界不少企业用“数据洪流”来描述这一场景。业内预计,未来每辆自动驾驶汽车每天会产生4TB数据,每架飞机每天会产生40TB数据,而每一家智能工厂每天会产生1PB以上的生产视频数据。由于网络带宽和网络容量并没有实现同步的、连续性的爆炸式增长,从而造成带宽资源不足,这些短时间内产生的海量数据如果实时上传至云端,一定会造成网络拥塞。

图7联网设备产生海量数据

带宽资源和海量数据的不同步增长,一方面网络弹性扩容能力有限,另一方面并非所有的数据需要通过网络上传至云端。一些需要短时间处理或存储周期很短的数据,本身无需占用有限带宽资源上传,而在靠近数据源头进行处理后即可,视频原始数据、工厂机器数据等有相当部分是通过边缘平台处理。麦肯锡曾经对一个海上钻井平台进行过调研,发现该平台上3万个传感器采集的数据中,40%没有被存储,剩余的大部分在本地存储,给边缘智能场景提供数据来源。

图8海上钻井平台数据(来源:麦肯锡)

另一网络资源受限的场景是突发的网络中断。虽然我国2G网络已成为全球精品网络,4G覆盖99%的人口,超过95%行政村都接入宽带,中国电信、中国联通已实现全国超过30万个NB-IoT基站商用,但这些并不能保证物联网所有应用场景中网络没有中断的风险。在很多周边环境复杂的应用场景,突发的事件可能使得传输受到限制,如森林防火、塌方泥石流监控、气象监测等恶劣环境下的物联网应用,一般会考虑到突发网络中断时靠近数据源的缓存、处理来保障业务的连续性。也有一些应用部署在热点区域,在大量设备同时请求上行数据时造成的临时中断。比如,一些共享单车密集区域高峰用车时段可能对该区域的基站形成很大压力,造成上线率低,而运营商除了对这些热点区域的基站设备进行优化外,通过边缘智能的方案对共享单车数据上报形成调节。

(3)端到端低时延的场景

低时延高可靠(uRLLC)是国际电信联盟(ITU)确定的5G应用场景之一,标准化组织3GPP也为实现该场景进行了大量的标准化工作,今年6月份冻结的首个独立组网5G标准中就支持大部分uRLLC的场景,这一场景也是移动边缘计算(MEC)实现的主要技术之一。

图9各类通信技术端到端时延测试

从网络传输角度看,端到端时延已经成为通信技术供应商为用户提供的服务中关键指标之一。未来智能工业、自动驾驶等应用场景中需要进行监测、控制、执行,往往需要非常低的时延,很多情况下时延要求在10ms以下。现有成熟的网络传输方式并不能实现这一要求,根据独立第三方网络测试机构Open Signal的测试结果,目前4GLTE可以达到100ms以下的端到端时延,而其他方案时延均高于4GLTE,这一结果还不足以支撑智能工厂、自动驾驶的有效应用。而ITU所定义的5G空口时延为1ms,可以满足这方面需求,不过这个1ms的指标需要边缘智能的协助。

图10端到端时延示例

Open Signal所测试的端到端时延是指终端——基站——回传——核心网——云端的往返时延。而在云端之前,即终端至核心网之间的时延约为20-30ms,但核心网到云端的物理距离将主要决定了网络时延,由于云端服务器分散在全球各地,物理距离较远,终端数据需要通过光纤连接访问云端,增加了时延。如果需要低时延场景的业务采用终端——云端的往返模式,即使终端——核心网之间的时延降到非常低的程度,也根本无法保障其实时性要求,自动驾驶、智能工业等业务无法开展。

图11通过边缘智能实现毫秒级时延

此时,对于边缘智能的需求就非常明显,5G技术通过将存储、计算、智能资源下沉,在基站侧或无线接入网之间的位置,以边缘智能的方案来处理实时性、短周期的数据,即时回馈给终端去执行,达到1ms的时延水平,从而保障业务的正常开展。

2.1.2应用特征产生的场景

万物互联会产生多样化、差异化的应用,不少应用本身具备的特征直接决定了需要采用边缘智能的方式,尤其是需要提供差异化服务的场景,包括专网类业务场景、营销类业务场景和体验提升的场景等。

(1)专网类业务场景

大量行业、企业因为业务特殊性、数据保密等原因,采用专网方案,主要业务数据在其专用网络中进行计算处理,不使用公共网络服务。在过去的数十年中,专网类业务规模虽然远不如公网类业务那么大,但政务、公安、民航、铁路、交通、工业等大量行业都在采用专网服务,做到物理隔离来保证数据安全。

专网业务中不少场景对边缘智能有天然的需求,虽然专网用户会自建数据中心或私有云,但面对很多业务数据本地产生、本地终结的特征,并不需要所有数据都存放在其自有的服务器上,通过数据源头平台处理能提升效率,同时也减轻自建服务器的容量压力。

比较典型的专网场景就是企业的工业制造场景。上一节中所述,智能工业本身就有低时延、高可靠的通信场景,需要通过边缘智能助力实现。除此之外,工业制造现场每天会产生的海量数据,直接在现场就近进行处理,目前很多企业已能够提供成熟的边缘智能软硬件解决方案,在工厂的局域环境下完成。

另一种典型的专网场景是本地视频,由于很多用户的安装的视频设备采集数据也仅限于其专网内部,作为监测、管理手段提升的方式。不过,很多监控视频的大部分时间都是静止场景,不论是从摄像头终端侧或者服务器侧处理都不是很理想的方式。此时,部署边缘智能平台对于这种专网监控视频就很有意义,通过边缘智能平台筛选出监控画面变化的部分或一些有意义的视频片段,对服务器进行回传,而把价值不高的监控内容就地缓存在边缘智能服务器中,保障专网资源留给关键业务。

图12专网视频监控边缘智能方案

(2)营销提升业务场景

对于很多移动互联网和物联网场景,通过边缘智能可以更为快速地对终端侧数据和缓存数据进行用户画像刻画,提升营销效果。边缘智能服务器和平台的缓存内容给终端用户提供体验业务,促进用户对业务的了解和购买,在用户订购后,通过端、边、管、云融合的方案为其提供服务;一些专门业务的体验厅、营业厅等场所,在边缘智能助力下给潜在用户带来耳目一新的体验。类似的服务方式可以在各行业中落地,通过与拥有垂直行业渠道资源企业合作,开展联合营销,提升业务质量。比如,在零售领域,边缘智能平台将定位与移动设备通信能力结合,向消费者和商场提供更有价值的信息,在网络中的关键点收集的信息可以作为大数据分析的一部分,以更好地为客户提供服务。

(3)体验提升的场景

体验提升场景是用户采用边缘智能方案最主要的考虑之一。目前,大部分物联网的业务是以整体解决方案的形式提供给用户,而其中关键部分的优化对于整体方案的体验提升非常重要,在大量场合中,边缘智能的采用会让整体业务体验提升到新的高度。在已成熟的移动互联网场景中,内容分发网络(CDN)已经成为提升业务体验的重要手段,比如很多借助运营商网络提供OTT业务的内容和应用供应商,推出和部署了一些CDN系统,在移动网络承载能力有限的情况下起到分流作用,可以说是一种边缘智能的方式。新的互联网视频直播、游戏等业务体验的提升也需要边缘智能的进一步成熟,同时形成边缘智能产业生态。物联网各类碎片化场景中面对着比OTT业务更为复杂的情况,新业务的层出不穷也让基于互联网业务的边缘智能系统无法完全承载起来,对新的边缘智能方案的需求就越来越强烈。

VR/AR是典型的需要体验提升的场景。目前,相应的VR/AR已广泛应用于旅游景区、博物馆、体育赛事、演唱会等消费级场所,也有不少行业作业场所借助VR/AR设备来完成。此前不少无线VR/AR采用终端和云端服务器交互方式,但此类设备产生的图像信息量太大,终端和云端之间反馈时延太长影响体验。一般采用的优化方案是将相应服务器部署在网络边缘侧,有效分担VR/AR图像识别运算压力,及时给终端反馈,增强用户体验。类似的体验提升场景非常多,智能物流、智能工业、车联网、智能医疗等需要保证实时性、可靠性的应用都有不断提升用户体验的需求,也是边缘智能能够直接应用的场所。

总体来说,业务场景需求是驱动边缘智能产业发展的最大因素,由边缘计算向边缘智能的发展,也是基于满足业务场景需求而提出新内涵。

2.2技术能力支撑的边缘智能

随着IT、CT和OT技术的不断融合,物联网底层共性技术范畴不断扩大,边缘智能也是在各类不同领域技术有新的突破和融合的基础上才能落地。因此,从供给侧的角度来看边缘智能,主要是从边缘智能的支撑技术出发。

边缘智能相关的技术主要包括两类,一类是主要应用于边缘智能的各项软件、平台、系统等IT方面的技术,另一类是通信业新的CT技术进步给边缘智能落地带来新的机遇。前者主要包括适用于边缘智能的平台/系统,比如ParaDrop、Cloudlet、PCloud、Firework、海云计算系统等,以及让边缘智能更加高效的技术,比如计算迁移、存储技术、轻量级函数库和内核;后者则包括支持移动通信发展的新的技术。

2.2.1边缘智能的平台//系统

(1)ParaDrop

ParaDrop是威斯康星大学麦迪逊分校的研究项目,WiFi接入点可以在ParaDrop的支持下扩展为边缘计算系统,像普通服务器一样运行。其使用容器技术来隔离不同应用的运行环境,在云端的后台服务控制系统上部署所有应用的安装、运行和撤销。

ParaDrop系统主要由三部分组成,ParaDrop后端,ParaDrop网关和开发者API。ParaDrop后端集中的管理ParaDrop系统资源,维护网关、用户和服务降落伞信息,提供一个服务降落伞商店存储可以部署在网关上的chute文件。还提供两个重要的接口WAMPAPI和HTTPRESTfulAPIA,前者用于和ParaDrop网关通信,发送控制信息,接收网关回复和状态报告,后者用于和用户、开发者、管理者以及网关通信。ParaDrop网关是具体的执行引擎,给各服务降落伞提供虚拟化的资源环境,包括CPU、内存和网络资源。开发者API使开发者可以通过API监测和控制ParaDrop系统。

ParaDrop主要应用于物联网中,特别是物联网数据分析。ParaDrop的优势主要包括以下几个方面。敏感数据可以在本地处理,不用上传到云端,保护用户隐私;接入点靠近数据源,缩短应用的响应时间;数据按需上传互联网,减少网络负载;在某些无法联网的情况下,部分应用依然可以使用等等。

(2)Cloudlet

Cloudlet是卡内基梅隆大学于2009年提出的概念,是一个可信且资源丰富的主机或机群,部署在网络边缘,与互联网相连,可以被周围的设备访问,为其提供服务。

Cloudlet将原先移动云计算的“移动设备——云”两层架构变为“移动设备——Cloudlet——云”三层架构。可以在个人计算机、工作站或者低成本服务器上实现,可以由单机构成,也可以由多台机器组成的小集群构成。

图13Cloudlet体系结构

作为网络边缘的小型云计算中心,Cloudlet可以暂时存储来自云端的状态信息,并进行自我管理;其有相对充足的计算资源,可以满足多个移动用户的计算任务;介于云端和用户之间,更加靠近用户,受网络带宽和时延的限制较小。

(3)PCloud

PCloud是佐治亚大学在边缘计算领域的研究成果,可以将周围的计算、存储、输入/输出设备与云计算资源整合,使这些资源可以无缝地为移动设备提供支持。PCloud将边缘资源与云资源有机结合,二者相辅相成,优势互补。云计算的丰富资源弥补边缘设备计算、存储能力上的不足,而边缘设备由于贴近用户可以提供云计算无法提供的低时延服务。此外,PCloud也使整个系统的可用性增强,无论是网络故障还是设备故障都可以选择备用资源。

(4)Firework

Firework(烟花模型)是韦恩州立大学MIST实验室提出的边缘计算下的编程模型。Firework系统中,一个数据处理服务会拆分为多个数字处理子服务,而Firework对数据处理流程的调度,可以分为两个层次。第一层是相同子服务层调度,烟花节点会根据情况与周边具有相同子服务的烟花节点进行合作执行,从而可以以最优的响应时间反应子服务,也可以对周围未提供子服务的且空闲的烟花节点进行调用;第二层是计算流层调度,计算流的烟花节点会相互合作,动态地调度路径上节点的执行情况,以达到最优的情况。

图14Firework模型

(5)海云计算系统

海云计算系统是中科院提出边缘计算系统,可以拆分为云计算和海计算理解,云计算是服务端的计算模式,海计算是物理世界的物体之间的计算模式。该系统一共包括四个部分:一个计算模型——REST2.0,它将Web计算中的REST架构风格拓展到海云计算中;一个存储系统,其能够处理ZB级别的数据;一个高能效数据中心,它能够运行数十亿级别线程;一个高能效的弹性处理器,其能够每秒每瓦特进行万亿次操作。REST架构为现代Web计算和当今许多云计算系统提供通用架构,海端设备通过REST接口访问云端,客户端设备将继续使用REST接口运行Web浏览器或应用程序。

(6)各平台//系统之间对比

从应用领域、服务移动性、虚拟化技术、系统特点四个方面对主要边缘计算系统进行比较分析。

表格1边缘计算各系统应用领域对比

表格2边缘计算各系统服务移动性对比

表格3边缘计算各系统虚拟化技术对比

表格4边缘计算各系统特点对比

2.2.2其他TIT技术分析

在边缘计算平台/系统的基础之上,由于边缘设备本身不会有较大的数据存储和计算能力,这就需要部署计算系统的边缘设备拥有适当的能力搭配,计算迁移、存储技术,以及轻量级适用于边缘系统的函数库和内核必不可少。

(1)计算迁移

在云计算模型中,计算迁移是将计算密集型任务迁移到资源充足的计算中心,而对于边缘计算模型来说,计算迁移策略除了将计算密集型任务迁移到边缘设备处执行,也应该注重如何较少的网络传输数据量。

边缘计算的计算迁移策略是将边缘设备采集到的数据进行部分处理或者预处理,并且过滤掉无用数据。此外,就像云计算会在计算能力不足的时候将一些任务迁移到有计算资源的中心,同理,当边缘设备的计算能力不足之时,其可以进行动态的任务迁移、划分。

计算迁移的规则和方式取决于应用模型,迁移的结果应该从能耗、时延、数据处理结果等方面综合考量。

(2)存储技术

由于边缘设备会实时的、连续的产生数据,而我们部署边缘计算能力的初衷也是为了对实时数据进行处理并得到快速的执行,边缘计算在数据存储方面就需具有较强的实时性。

从高效存储和连续访问实时数据的角度出发,非易失存储介质的读写性能远超传统机械硬盘,可以有效的改善现有存储系统I/O受限的问题。但是,传统的存储系统软件栈不能充分的开发非易失存储介质的最大性能,因此未来对存储系统的更新换代应该是首先要解决的问题。

(3)轻量级函数库和内核

与大型服务器不同,边缘设备由于硬件资源的限制,难以支持大型软件的运行。从目前的处理器速度以及功耗来看,仍不足以支持复杂的数据处理。此外由于不同的边缘设备具有较强的异构性,性能参数差异较大,部署重量级的函数库和内核并不适用于边缘计算模型。

受到系统本身的资源限制,为了占用更少的资源,降低时延,轻量级函数库和内核是边缘计算模型的首选。

2.2.3通信相关技术

移动通信即将迎来5G时代,目前基于独立组网的首个5G标准已经冻结,预计2020年之前5G所有标准将冻结。5G无线技术创新非常丰富,其中为了实现更大容量、更高带宽和更低时延,在无线接入网侧引入移动边缘计算功能,不少技术创新正是为了实现移动边缘计算而设计的。

(1)新空口设计

5G网络在标准规划初期,就注重通过各种已有技术对空口进行新的设计,实现对5G应用场景的需求,5G空口技术主要包括:

图15 5G空口技术框架

为了满足低时延高可靠的场景,5G空口中有一些技术做了针对性的设计,其中一个目标就是大幅度降低空口传输时延,给移动边缘计算打下基础。如:在帧结构方面,采用更短的帧长;在多址技术方面,通过SCMA、PDMA、MUSA等技术实现面调度传输,避免资源分配流程。通过核心网功能下沉,移动内容本地化等方式,缩短传输路径,接入网侧引入以簇为单位的动态网络结构,建立动态Mesh通信链路,支持设备和终端间多跳通信来缩短端到端时延。

(2)网络架构设计

为了实现移动边缘计算的核心功能,将业务平台下沉到网络边缘,5G标准中对相关网络架构进行专门设计。根据IMT2020(5G)推进组发布的《5G网络架构设计白皮书》,对于移动边缘计算核心功能设计主要包括:应用和内容进管道,边缘计算与网关功能联合部署,构建灵活分布的服务体系;动态业务链功能,让边缘计算并不限于简单的就近缓存和业务服务器下沉,而且随着计算节点与转发节点的融合,在控制面功能的集中调度下,实现动态业务链技术,灵活控制业务数据流在应用间路由;控制平面辅助功能,即边缘计算和移动性管理、会话管理等控制功能结合,进一步优化服务能力。

图16 5G网络移动边缘计算架构

(3)新型基础设施平台

5G新型基础设施平台的基础是网络功能虚拟化(NFV)和软件定义网络(SDN)技术。IMT2020(5G)推进组发布的《5G网络技术架构白皮书》认为,通过软件与硬件的分离,NFV为5G网络提供更具弹性的基础设施平台,组件化的网络功能模块实现控制面功能可重构,并对通用硬件资源实现按需分配和动态伸缩,以达到优化资源利用率。SDN技术实现控制功能和转发功能的分离,这有利于网络控制平面从全局视角来感知和调度网络资源。NFV和SDN技术的进步成熟,也给移动边缘计算打下坚实基础。

财经自媒体联盟更多自媒体作者

新浪首页 语音播报 相关新闻 返回顶部