垂直起降不容易,这条路上布满先行者的遗憾

垂直起降不容易,这条路上布满先行者的遗憾
2024年11月11日 20:44 观察者网

“镧影R6000”勾起了人们对垂直起落的兴趣,不少人兴致勃勃地构想起更适合垂直起落的构型。实际上,绝大部分今天人们想得到的构型,在历史上都尝试过,有的还飞起来了。说垂直起落的路上布满了先行者的尸体,真是一点不为过。

说起来,自从莱特兄弟发明飞机,不需要跑道的飞机就一直是人们不懈的追求,尽管成功量产的只有谈不上惊艳的“鹞”式、雅克-38、F-35B,如果不算差点量产的雅克-41的话。

但垂直起落之路一路走来,不乏令人拍案叫绝的奇思妙想。这里分段介绍几个。

一、旋转机翼

波音一般来说是个循规蹈矩的公司,不大搞旁门左道的东西。但波音X-50“蜻蜓”可算眼前一亮。

X-50粗看起来就是有点奇怪的鸭式飞机
“鸭翼”是可以旋转的,这时起旋翼的作用
还可根据飞行状态要求改变迎角
垂直起飞后,最终旋翼锁定,成为机翼

既然机翼与空气的相对运动是产生升力的关键,直升机的原理就是“飞机不动,机翼动;不能直线动,就转着动”。也就是说,机翼和旋翼没有绝对的分界线。机翼转动,就可以当旋翼用;旋翼停转,就可以当机翼用。旋转机翼飞机(stop rotor,也称rotor wing,但容易与指代直升机的rotary wing相混淆)就是这原理,X-50就是这样一个东西。

好处当然是没有死重,而且固定翼状态下速度在理论上可以达到高亚音速。因此,美国陆军曾经期望很高,或许终于有了自己的垂直起落固定翼战斗机了。

旋转机翼攻击机才是理想武直
上舰后也有大用,解决了速度和航程问题

X-50还采用了一些新颖的技术。旋翼不是机械驱动的,是用翼尖喷气驱动的,因此没有传统直升机的反扭力问题,不需要尾桨。低速飞行时,用姿控喷嘴改变机体和桨盘角度,前倾时旋翼产生一点推进分量,后倾时旋翼产生一点倒飞分量。高速飞行时,用喷气发动机推进,旋翼锁定,成为机翼。

翼尖喷气推动旋翼,高速推进用喷气发动机

X-50在技术演示中,完成了所有规定科目,做到了垂直起落、悬停、低速前后飞、高速前飞等,但最后还是作为技术储备封存了。

机翼是第一个问题。如果顺时针旋转的话,在左侧时前缘就是前缘,后缘就是后缘,机翼和旋翼桨叶的前后缘是一致的;转动到右侧时,左侧时的前缘就变后缘了,后缘则变前缘,机翼和旋翼桨叶的前后缘就相反了。因此旋转机翼必须采用对称翼型。

对称翼型(上)和常规翼型(下)

对称翼型早已有之,但一般是用于高速飞机的。机翼靠上下翼面的气流速度差产生升力。非对称翼型(水滴形翼型)在零迎角的时候就能产生升力,气动效率高。但速度太高的话,一方面阻力太大,另一方面也不需要那么多升力,所以对称翼型应运而生,完全靠迎角来控制升力的产生,在零迎角时不产生升力。这样一来,低速飞行时气动效率不高。

一般对称翼型只是上下对称,用于旋转机翼还需要前后对称,进一步降低气动效率。

旋转机翼飞机谈不上高速飞机,用上下前后都对称的翼型的话,气动效率损失可观,尤其在转入固定翼状态但还是相对低速的状态下。但不用对称翼型则没法解决固定翼前后缘和旋翼前后缘不一致的问题。

这也决定了机翼上不能有襟翼、副翼等常用气动控制面,只能整体扭转,结构重量和灵敏度都成问题。好处是改变机翼角度的机构对旋翼状态和机翼状态都有用,坏处是机翼状态需要同向改变,旋翼状态需要反向改变,机械同步问题比较复杂,电气同步则不够可靠。

另一个问题是飞行姿态的转换。

垂直起飞时,翼尖喷气推动旋翼,这时像直升机一样工作,姿态控制喷嘴提供一点机体和桨盘的前倾或者后倾,产生低速前飞或者倒飞速度。加速到中速后,喷气发动机开始出力,旋翼进入风车自旋状态,继续产生升力,但不再有动力驱动。进一步加速后,旋翼锁定,成为固定翼飞机。

转入垂直降落的过程正好相反,首先机翼解锁,进入旋翼自旋状态,然后转入动力旋转状态,垂直降落。

由于有自旋的旋翼机状态,X-50也可以短滑跑起飞、着陆。旋翼机只需要几十米甚至十几米就可以短滑跑起飞、着陆了。这可以增加起飞重量,降低起飞、着陆操作难度。

说到操作难度,任何牵涉到模式转换的飞行控制都有难度,X-50也不例外。这样三段式的飞行模式转换的飞控挑战大大的,这也是最终技术封存的原因之一。

具体来说,动力旋翼到自旋旋翼之间的转换是无缝的,但自旋旋翼到固定翼之间的转换是升力机制的突变。可以通过机翼迎角趋零降低旋翼出力,最后做到无缝转换,但那样锁定后的旋转机翼就不产生升力了,依然是死重。固定的前翼和后翼对升力的贡献也不好办。应该能提供全部升力,才能在自旋旋翼提供零升力时无缝接过;但要是最后还是需要锁定后的自旋旋翼有一定的迎角、产生主要升力,那固定前翼和后翼又多余了,成为死重和阻力。

在X-50之前,有过更加疯狂的旋转机翼设想。

休斯设想过旋转机翼的运输机,巨大的三角翼-旋翼是最大特征
F-104也有过旋转机翼的设想
西科斯基方案更加接近直升机

不过西科斯基不是光说不练,研究过用S-72测试旋转机翼的问题,但在最后关头因为美国政府拨款不到位而下马了

这些方案根本没有走下纸面,机械和气动复杂性当然是大问题,还有一个问题就是自旋到固定翼之间的转换不好解决。

二、折叠旋翼

旋翼是直升机的奥秘所在,也是麻烦所在。

旋翼的每一圈旋转都要经历前行段和后行段,垂直起落和悬停时问题不大,但前飞时升力和阻力周期性变化,必须用柔性桨叶,否则震动和疲劳受不了。

直升机桨叶都带有一定程度的柔性,停放时能看到明显的下垂

一旦飞起来,这点柔性不碍事,不光吸收震动、避免疲劳,还在离心力的作用下自我“硬化”。

倾转旋翼解决了前飞和悬停的问题,但并不理想。前飞时桨盘阻力太大,悬停时桨盘反而太小、盘载过高。另一个问题是桨叶的柔性。作为直升机的旋翼桨叶,需要带有柔性;作为推进螺旋桨的桨叶,应该刚性。现在是用半刚性解决的,但与其说是博采众长,不如说是博采众短,是没有办法的办法。

因此,一个思路是让旋翼成为旋翼,但是在不用的时候收藏起来,这是可收藏旋翼(stowed rotor)的思路。

洛克希德CL945只是看起来有点奇怪的螺旋桨运输机,多了一个尾桨
尾桨当然不是画蛇添足,而是旋翼有地方收藏,尾桨就没有地方收藏了。好在尾桨桨盘小,阻力不大,不碍事
旋翼支柱在使用的时候向上伸出,旋翼展开
平飞状态时完全收入整流舱盖下
洛克希德还有喷气版,尾桨收藏在H形双垂尾之间,使用时支楞起来,见地面的那一架
这是收藏了一半的状态

可收藏旋翼的技术困难简直“罄竹难书”,难怪只停留在纸面上,连实物研究机都没有。但不纠结于完全收藏,只要在气动上流线就行,天地就宽广多了。

贝尔早就开始研究倾转旋翼的问题,XV-3在1955年就首飞了。

XV-3是倾转转轴,V-22改为倾转发动机,V-280再回到倾转转轴,真是太阳底下并无新事

贝尔在研究倾转旋翼的时候,早就认识到平飞状态桨盘过大的问题,最早的解决方案是后向折叠。倾转旋翼从平飞转入悬停是从前向后倾转还是从后向前倾转本无所谓,但是改为从后向前倾转后,不用的时候向后折叠,就大大减小阻力,但不减少死重。在死重和阻力之间,阻力是更大的问题。

旋翼展开时,是直升机状态,与普通倾转旋翼无异
在平飞状态旋翼向后折叠,减小阻力。当然,推进需要单独的推进发动机

进一步发展,可旋翼桨叶折叠到发动机短舱侧面,阻力和重量差不多,但刚性和平衡更好

在DARPA的HSVTOL(High Speed Vertical Take Off Landing)计划里,贝尔方案就是折叠旋翼,有大小两型有人机和一型无人机

这里看折叠细节更加清楚

旋翼展开到直升机状态,就和倾转旋翼无异

折叠旋翼曾经只是设想,现在DAPRA赞助下,可望得到进一步发展。

恶魔就在细节之中,不到实践一段时间,到底有多优秀、多大问题,还不好下定论。不过旋转机翼的自旋到固定翼过渡问题没有了。折叠旋翼在转入倾转前飞状态后,逐渐减小出力,由推进发动机接过,反正完全靠机翼产生升力,升力方面的不连续性问题不再存在,剩下的就是顺桨、锁定、倾倒桨叶和收藏了,这些不难做到。

折叠旋翼(folded rotor)还可以有其他变型,比如说旋转机翼与折叠旋翼之间的混合构型。

在这里,倾转旋翼停转后,成为机翼的一部分,但实际上是折叠旋翼思路的变形

三、直立起落

垂直起落的关键是在垂直阶段提供直接向下的推力。既然如此,像火箭一样直立起飞、着陆不就妥了?没错,这就是直立起落(tail sitter)。

美国海军在50年代对直立起落很热衷,这是康维尔Pogo
苏霍伊Shkval更加先进,但停留在设想阶段,没有成为实物
飞上天空的话,见识少的对手可能要吓一跳

但直立起飞不是战后才有的设想,在纳粹时代,就有Fokker Wulf Triebflugel的设计。

在所有方面,Triebflugel都是惊世骇俗的疯狂设计

Fokker Wulf如今已经是故纸堆里的名字,但在二战时代,还是位居战斗机技术前沿的大家。大名鼎鼎的FW190就是Fokker Wulf的作品,名气没有梅塞斯密特Me109大,因为后者太多了,而且从西班牙内战时代打起,打满二战全场。FW190的技术和性能更先进,是德国飞行员的最爱。但Triebfluger完全是另一个星球上的东西

直立起飞、降落已经是科幻级的,这东西还是喷气推进。但不是你想的那样,而是用翼尖冲压喷气发动机推动巨大的螺旋桨,同时用于直立起飞和水平推进。

冲压喷气发动机没有旋转部件,简单可靠,而且出力大。耗油较高,但和推力、重量相比,是可接受的代价。

由于是翼尖喷气推进,反扭力不是问题,否则没有尾桨,飞行员还没上天就得在自转中晕死。旋翼与机体通过滑环连接,所以机体和座舱是稳定的。

但这个设计有太多的技术问题。

冲压发动机需要在一定速度下才能启动,这还好解决,用辅助动力启动就是。冲压发动机的噪声奇大,这也问题不大,纳粹那阵子不担心环评。问题出在巨大的滑环,需要严丝合缝、高度可靠、经久耐用,这不是战时德国制造能解决的。

Triebfluger连实验性的样机都没有,但要是真的飞起来,驾着P-51、喷火的盟军飞行员怕还没有交手就吓出心理阴影来,那个团团挥舞着大锤的家伙太邪恶了。

战后直立起落方面,美国专注于螺旋桨为基础,因为螺旋桨在起落的低速状态下效率更高;法国则专注于喷气式,这才是未来。但法国玩了一把更大的。

SNECMA C450 Cleoptere是如假包换的直立起落,而且是喷气式
检修或者地面移动需要有大型起竖设备帮一把
这个角度好像很萌的昆虫,或者探头探脑的小鸟
最惊世骇俗的地方是这个环形翼

法国人的思路就是与众不同。SNECMA C450 Cleoptere不仅是喷气式直立起落,还采用惊世骇俗的环形翼。环形翼可以粗略看成上下圆滑过渡、两端连接的双翼,好处是在任何横滚角度都没有升力损失,坏处是在最常用的平飞状态下产生升力的气动效率不及正常的水平机翼。

但就直立起落而言,环形翼简直是绝配,正好提供宽大稳定的底座。不过作为战斗机,除非以航炮为唯一武器,环形翼没地方吊挂导弹、炸弹,连机内武器舱都不可能。这只是有趣的尝试。在技术上的问题解决不了之后,尤其是悬停后下降的稳定性,项目下马了。实际上,即使再坚持下去,喷气排气在环形翼内反涌上来,会造成发动机的废气回吸问题,还有环形翼后缘被喷气冲刷而过热的问题。

在有人驾驶时代,直立起飞问题不大,加大推力就拔地而起,然后靠气动控制自然地转入平飞。直立着陆是个麻烦事。需要首先转入爬升,然后在直立状态下降低推力,有控制地垂直下降。问题是飞行员脸冲天,很难看清地面的情况,也难以判断直立状态。

这个问题在无人机时代解决了。飞手在地面上,飞机的姿态无所谓,直立起飞着陆不成问题。不过怕侧风是本质问题,这个没法解决。在海上使用的话,也怕甲板摇晃,尤其是着陆时,可能需要抛索拉降之类的辅助手段。

DARPA为美国海军陆战队研制的“燕鸥”(Tern)无人机就是直立起落的
横长竖短的十字形机翼既满足四点着陆的需要,又做到机翼以水平为主,提高气动效率
直立起落还可以和旋转机翼相结合

在直立起落时,旋转机翼作为旋翼使用,产生升力;在平飞状态,旋转机翼锁定,作为固定的机翼和鸭翼,完全由推进螺旋桨推进

四、推力转向

最“循规蹈矩”的垂直起落还是推力转向,“鹞”式是经典。

在F-35B之前,“鹞”是最重要的垂直起落飞机。F-35B以短距起飞-垂直降落为主,但有垂直起飞能力,只是基本上不能携带武器弹药了

“鹞”式的罗尔斯-罗伊斯“飞马”发动机活像趴着的乌龟,这是精妙之所在,也是阻止改进的命门

“鹞”式用“四立柱”原理,四个喷口在垂直起落和悬停中保持平衡
喷口有“关节”控制上下偏转,还用“百叶窗”导流

“鹞”式的“四立柱”决定了发动机的四个喷口必须推力均匀,而且围绕在飞机重心周围。这是很要命的限制。

就战斗机而言,发动机靠后才是常规,这样前半机体可以用于座舱、航电、武器、燃油等。发动机把中间的黄金位置占了,总体和气动布局就很不好布置。“四立柱”必须平衡出力,这也决定了需要单发、四喷口,否则很难保证同步,而不同步的结果是任何不平衡都在刹那间就导致失事。垂直起落和悬停都是在极低空,根本没有时间作出反应。

“飞马”的独特要求决定了必须是高涵道比涡扇,前喷口从压气机引出,后喷口才是“热”的。这也限制了“飞马”没法用加力燃烧室,也没法用收敛-扩散喷管,“鹞”式在原理上就不可能达到超音速。罗尔斯-罗伊斯想过在前喷管里引入某种形式的“加力燃烧”,但因为各种技术问题,更因为英国政府不给钱了,没弄下去。

F-35B把四立柱改成三立柱,用翼尖姿态控制喷口保持横滚方向上的平衡,但升力风扇和发动机保持机械传动,不仅免除升力发动机,也保证绝对同步

在“鹞”式之后,英国研究过很多垂直起落的超音速战斗机,其中不乏奇思妙想。

这些设计还相对常规,用了各种升力发动机、引射增升等技术,但思路上与50-60年代的构想没大两样

BAe P.103看似貌不惊人的双发战斗机,只是采用了已经很少见的翼下发动机布局

但发动机可以倾转,实际上用于垂直起飞可能吃力,但短距起飞还是很能胜任的

在“鹞”式之后,英国做了大量研究,试图研制超音速垂直起落战斗机。实际上根据“鹞”式的使用经验,重点已经转向短距起飞、垂直降落(STOVL)了。利用一点机翼气动升力的短距起飞比垂直起飞的起飞重量大得多,才能携带有用的作战载荷。即使在机场受到严重破坏的情况下,总还是有一些平整的铺装地面可供短距起飞,死抱着零滑跑的垂直起飞(VTOL)实际上缺乏实战意义。

除了在常规战斗机布局前后左右打补丁、贴膏药地加装升力发动机、升力风扇、引射增升,有意思的是P.1214和P.1216设计方案。

比较惊人的是P.1214。这里当然是玩具模型,但这是一个真实的设计方案

如果成真,看着就很科幻,很提气
肚皮翻过来的话,马王爷真是有三只眼
双垂尾是高机动战斗机的标配,也是后置X翼的必须
大面积的机翼很适合外挂

P.1214采用非同寻常的X形机翼,可以看作前掠翼和后掠翼的组合。

前掠翼的气动优点在二战末年就发现了,纳粹德国的容克-287就采用前掠翼。

容克-287

后掠翼的气流有展流动,在翼尖“滑落”,有翼尖损失。翼梢小翼可以降低,但不能避免。前掠翼没有这个问题,气动效率高,也不容易失速,因此低速机动性特别好。但前掠翼有气动弹性发散问题,机翼的气动弹性变形容易造成横滚失控,直到定向编织复材机翼出现才解决这个问题。这正好是P.1214的时代。

X形机翼不仅极大增加了翼面积,降低翼载,提高机动性,还解决了垂直起落和悬停要求发动机的“四立柱”(或者“三立柱”)推力围绕重心,但机翼气动升力中心需要为超音速考虑而向后移动过的问题。前机身设计也容许更加宽松的进气道设计,不像“鹞”式那样,几乎没地方安排进气道,空气一入进气口就是压气机,然后就是前喷口。

在理论上,更多的机翼也提供了更多的翼下挂载武器和副油箱的空间。最重要的是,这样的X翼战斗机看着就很涨士气。不过这个方案太前卫了,悄悄出台,悄悄搁置。

P.1216常规一点,改用双尾撑
发动机还是一样的三点式布置

P.1126没有那么前卫,但还是悄悄搁置了。

英国已经没钱了。慢说自己单干搞先进STOVL战斗机,常规战斗机都需要拉上欧洲国家一起干,最后成事的还是“台风”。积攒的STOVL研究最后“孝敬”美国了,一些经验最后体现在JSF计划的竞标方案里,波音X-32就是“鹞”式看着一点不像的远方亲戚。

波音X-32采用“三立柱”推力

波音X-32采用“三立柱”推力,但机尾喷管只提供推力,不提供升力。重心后两侧的向下转向喷管实际上通过导流阀引导过来,推力喷管方向在垂直起落和悬停状态下关闭;平飞时导流阀关闭向升力喷管的通路,打开向推力喷管的通路

波音X-32落选了,但其他英国经验还是用上了。“鹞”式的一个大问题是炽热喷流回吸。在X-32上,前喷管前方有一道向下的“气帘”,降低炽热喷流向机头进气口方向的流动;在X-35(最后成为F-35)上,升力风扇的排气是“冷”的(实际上由于压缩作用,还是升温的,只是没有喷气排气那么高),对发动机进气影响不大。姿控喷口更是英国经验,“鹞”式用四立柱,横向和纵向控制力臂都很短,不利于控制。在X-35上,升力风扇和尾喷口的距离很长,很有利于纵摇稳定。在X-32上,前后“立柱”之间的距离也比“鹞”式更长。

五、其他

还有一些比较特别的设计,不大好归类,统统放到这里。

贝尔X-22采用“四立柱”的涵道风扇

贝尔在直升机世界里是巨头,从一开始就在垂直起落方面深耕,1966年首飞的X-22曾经是很有潜力的方案。

这显然是现代多旋翼无人机的先驱,而且采用涵道风扇。

四个涵道风扇显然对应于“四立柱”,由于采用四台分别的发动机,横距和纵距问题都容易解决。当然,代价是交联驱动轴,前后、左右涵道风扇都用同步轴联动,每台发动机都能提供30%的额外功率,所以任一发动机故障的话,其余发动机可以接过,保证安全。当然,这样的同步轴意味着重量、机械复杂性和功率损耗。

现在多旋翼无人机不再用同步轴,主要是因为无人机没有那么高的安全性要求。不同步只是飞行时有点摇摇晃晃,无大碍。但换成载人的话,这点摇摇晃晃就不只是不舒适的问题,可能飞行员直接被晃晕了,没法安全操纵。最不济,一台电动机故障,无人机失控,摔了自认倒霉,但没有太大的问题。

多旋翼如果推广到载人,要么极大增加旋翼-电动机数量,八旋翼起跳,甚至更多,要么也采用机械的同步轴,那分布式电动驱动的优点就抵消了。

对于X-22来说,涵道风扇也是领先时代的。

与开放旋翼相比,涵道风扇的推进效率更高。旋翼翼尖和机翼翼尖一样,有翼尖涡流损失损失。对于机翼来说,下表面压力高,上表面压力低,这本来是产生升力的关键,但在翼尖处,气往低压流,气流会横着绕过来,向上表面流动,形成涡流。这部分能量既不产生升力,也不产生推力,所以是损失,等效为阻力。旋翼也一样,在翼尖有径向绕过来的涡流损失。说起来,这也是涡流环,但和一般说的速降中形成的涡流环不一样,不要混淆。

要降低翼尖损失,飞机用翼梢小翼,旋翼就用涵道。翼梢小翼增加重量和阻力,使用与否是个权衡问题。涵道的重量和阻力可是大得多了。一般说来,只有在旋翼直径无法加大而升力或者推力还是不够的时候,才采用涵道。在飞机上,在船上,都是这样。涵道壁还有阻隔噪声的作用,但这是次要的。

在X-22上,降低旋翼直径正是采用涵道风扇的原因,否则就大而无当了。

更重要的是,涵道风扇转过来,从升力风扇转变为推进风扇的时候,涵道本身起环形翼的作用,增加升力。

不过X-22最后还是因为性能达不到要求,尤其是垂直起飞重量,而速度没有比直升机高多少,下马了。本来这是美国陆军“空中吉普”的候选。

无数垂直起落设计或者构想中采用涵道风扇,最后都是栽在重量和阻力上,还有同步轴。

另一方面,现在人们对倾转旋翼已经熟悉,实际上还有倾转机翼。发动机和旋翼相对于机翼是固定的,但整个机翼一起倾转。

LTV XC-142差点投产了

在无人机时代,倾转机翼重新流行起来,因为只需要一套倾转机构

采用分布式多旋翼的话,尤其适合倾转机翼

倾转机翼和倾转旋翼的特点相近,实际上更加适合垂直起落和悬停,因为“下洗阻力”小。但在短距起落状态,接近竖立的机翼像门板一样,阻力极大,而且容易失速。不过在无人机时代,倾转机翼反而比倾转旋翼更加简单:只有一个倾转机构,而不像倾转旋翼,每一个旋翼都需要一个倾转机构。

对于分布式推进来说,倾转机翼尤其适合。分布式推进将推进力沿翼展均匀分布,使得推进气流不再集中在少数几个推进器(螺旋桨或者喷气口)附近,大大改善整个机翼的升力效率和受力分布。这要是也用倾转旋翼的话,沿着机翼翼展需要很多倾转机构不说,还需要很多开口,影响结构强度和重量。倾转机翼就省事多了,只需要在机翼-机体结合部一套倾转机构就成。

引射(ejection)利用文丘里管的原理,用少量高压流体的高速流动在喉部产生负压,抽动大量低压流体,极大增加流体总流量,增加推力

罗克韦尔XFV-12基于引射原理,用发动喷流拉动环境空气,产生增升

在原理验证时,效果很鼓舞,但到了实际飞机研制出来、开始试验的时候,发现引射增升根本达不到预期,对环境空气的条件太敏感,再增加引射口也无济于事

在陆地上使用的话,尘土、树叶被吸入,更是问题

这本来要成为朱姆沃尔特的“制海舰”的舰载战斗机,这下黄了

洛克希德XV-4也用引射增升,以差不多的理由下马了

但是美国海军还没有放弃制海舰的想法,在80年代战斗机推重比已经超过1的时代,试图用类似直立起飞的办法,用“起竖式舷侧平台”作为发射架,让战斗机靠自己的动力直接升空,降落还是需要拦阻索。但起飞准备时间很长,起飞重量和垂直起飞一样,很受限制。战斗机推重比超过1.0是指在正常起飞重量下。海上出动尤其强调航程和载弹量,需要以最大起飞重量起飞,还是不行。

紧接着美国海军推出直立起飞、拦阻索降落的思路

另一个思路是“天钩”。

在“鹞”式初步上舰的时候,人们以为可以像直升机一样运作,只要直升机甲板面积够用就行。后来发现,临时用用可以,常年出动不行。甲板摇晃、喷流烧灼都是问题。这也是“阿波罗”和“联盟”号在轨道上对接的时代,于是有设想用起重机将“鹞”式吊到舷侧海面上空,再发动机点火。这就没有喷流烧灼问题;起重机吊臂也可以在空中三轴稳定,相对于飞机的位置反而稳定。飞机产生足够升力后,起重机脱钩,飞机飞走。

回收时反过来,飞机首先与起重机吊钩对接,然后发动机关机,起重机把飞机吊回甲板。

天钩将“鹞”式的垂直起落吊离甲板,消除对舰船的影响

预期4000吨以上的驱逐舰就能改装,实际上7000吨以上更好,极大增加海上航空力量的建设成本和部署灵活性

这是真的试验过的

但“天钩”最后放弃了。对接是高难度的,偶尔为之可以,不宜作为日常运作。垂直起飞、着陆和悬停对重量的限制还是绕不过去,还是老老实实走STOVL航母的路。

财经自媒体联盟更多自媒体作者

新浪首页 语音播报 相关新闻 返回顶部