作者 | Martin Anderson
译者 | 盖磊
策划 | 凌敏
Google Research 与哈佛大学最新的合作研究,提出了一种称为“Mip-NeRF 360”的新方法。该方法使用 NeRF(Neural Radiance Fields)创建 360 度完整神经场景(neural scene)的视频,进一步推动了 NeRF 适用于在任何环境中随意抽象,不再受限于 桌面模型 或 封闭室内场景。
不同于大多数前期方法,Mip-NeRF 360 给定了对光线的解释方式,并通过建立关注区域边界降低了原本冗长的训练时间,实现可处理背景的扩展和天空这样的“非受限”场景。
新论文的标题为“Mip-NeRF 360: Unbounded Anti-Aliased Neural Radiance Fields”,由 Google Research 高级研究科学家 Jon Barron 牵头完成的。
为深入理解该论文的技术突破,首先对基于 NeRF 的图像生成做一个基础的阐释。
什么是 NeRF?
NeRF 网络并非真正地去描述一个视频,而是使用对单张照片和视频各帧的多个视角拼接出场景,因此更类似于一种基于 AI 实现的完全 3D 虚拟环境。该场景从技术上看只存在于 机器学习 算法的隐空间(latent space),但可从中任意抽取出大量的视角和视频。
给定一张照片,通过训练其中的信息,生成一个类似于传统 CGI 工作流中 体素网格 (Voxel grids) 的矩阵。矩阵中为 3D 空间中的每个点赋予了一个值,形成可被访问的场景。
该方法在完成各照片间必要的间质空间计算后,通过“光线追踪”确定光照路径上每张照片的每个可能像素点,并对其分配一个颜色值和透明度值。如果没有指定透明度,那么神经矩阵可能是完全不透明的,也可能是完为空的。
NeRF 矩阵与基于 CGI 的三维坐标空间不同,但与体素网格类似,其中的“封闭”对象并不存在任何内部表示。例如,一个架子鼓对象在 CGI 中是可以拆开查看其内部的,但在 NeRF 中一旦将该对象的表面不透明度值设置为 1,那么这台架子鼓就会消失。
像素视角的扩展
Mip-NeRF 360 是对 2021 年 3 月发表的一项研究 的进一步拓展。该研究提出的 Mip-NeRF 方法通过在 NeRF 中引入有效的抗锯齿,避免做过量的超采样(supersampling)。
NeRF 一般只计算单条像素路径,易于产生早期互联网图像格式和 游戏系统 中所特有的“锯齿感”。为消除锯齿感边缘,已有方法通常是对相邻像素进行采样,并给出平均表示。
针对传统 NeRF 仅对单条像素路径采样,Mip-NeRF 提出了一种类似宽光束手电筒的“锥形”汇集区,对相关相邻像素提供了充分的信息,形成细节改进的低代价抗锯齿方法。
图 3 Mip-NeRF 使用的“锥形”汇集区被切片成视锥(下图),并做进一步的模糊化处理,生成用于计算像素精度和锯齿的高斯空间。图片来源:https://www.youtube.com/watch?v=EpH175PY1A0
该方法显著改进了标准 NeRF 实现,如下图所示:
图 4 发表于 2021 年 3 月的 Mip-NeRF 方法(右图)。它通过更全面和低代价的锯齿流水线而非对像素的模糊化处理,实现细节改进,避免边缘产生锯齿状。图片来源:https://jonbarron.info/mipnerf/
无界 NeRF
但 Mip-NeRF 依然存在三个尚未解决的问题。首先,要应用于天空这样的无界环境中,其中可能包含超远距离的对象。Mip-NeRF 360 通过对 Mip-NeRF 高斯空间应用 Kalman 扭曲 解决了该问题。
第二,更大的场景需要更高的处理能力和更长的训练时间。为解决该问题,Mip-NeRF 360 使用小规模“提议”多层感知器(MLP,multi-layer perceptron)去“提炼”场景的几何形状。MLP 根据大规模标准 NeRF MLP 预测的几何形状,预先限定了当前形状范围,将训练速度提高了三倍。
第三,更大的场景往往会导致需解构几何体的离散化存在模糊不清的问题,进而导致输出游戏玩家可能非常熟知的“画面撕裂”伪影。Mip-NeRF 360 通过新建对 Mip-NeRF 射线间隔的正则化处理而解决了该问题。
图 5 图右侧使用 Mip-NeRF,难以对如此规模的场景进行界定,因此产生了不必要的伪影。图左侧使用了新的正则化处理,完全可优化消除这些干扰。
原文链接:
https://www.unite.ai/neural-rendering-nerf-takes-a-walk-in-the-fresh-air/
4000520066 欢迎批评指正
All Rights Reserved 新浪公司 版权所有