链乔教育在线|区块链+人工智能

链乔教育在线|区块链+人工智能
2021年04月28日 18:03 链乔教育在线

一、什么是人工智能?

人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。

人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。二十世纪七十年代以来,它被称为世界三大尖端技术之一(空间技术、能源技术、人工智能)。也被认为是二十一世纪(基因工程、纳米科学、人工智能)三大尖端技术之一。这是因为近三十年来它获得了迅速的发展,在很多学科领域都获得了广泛应用,并取得了丰硕的成果,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。

--------摘自百度百科

上面是较为严谨的课本说法,平常的理解是:给人们减轻体力活动,更加快捷、安全的一个智能的系统。它可以帮助人们完成人们认为无聊重复、高危险、高难度的工作的东西。总之,我们就可以理解成为它是一个万能的“机器人”,然后帮助我们干我们不想干的事情。

人工智能”一词最初是在1956年Dartmouth学会上提出的。从那以后,研究者们发展了众多理论和原理,人工智能的概念也随之扩展。人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。

二、区块链与人工智能

基于区块链的人工智能网络可以设定一致、有效的设备注册、授权及完善的生命周期管理机制,有利于提高人工智能设备的用户体验及安全性。此外,若各种人工智能设备通过区块链实现互联、互通,则有可能带来一种新型的经济模式,即人类组织与人工智能、人工智能与人工智能之间进行信息的交互甚至是业务的往来,而统一的区块链基础协议则可让不同的人工智能设备之间在互动过程中不断积累学习经验,从而实现人工智能程度的进一步提升资产管理领域,股权、债券、票据、收益凭证、仓单等资产由不同的中介机构托管,提高了这类资产的交易成本,也容易带来凭证被伪造等问题。

2.1AI将如何改变区块链?

尽管区块链极其强大,但也存在自身的限制。其中一些是技术相关的,而有的则来自于金融服务领域固有的思想陈旧的文化,但所有这些都会在某种程度上受到AI的影响:

电力消耗:挖矿是一项极其困难的任务,需要大量的电力以及金钱才能完成。而AI已经被证明是优化电力消耗的有效手段,所以类似结果也可以在区块链方面实现,这也许会导致挖矿硬件方面的投资下降。

可扩展性:区块链正在稳步地以每10分钟1MB的节奏在发展,目前累计已达85GB。中本聪首次提出可以把“区块链修剪”(比方说删除有关已完全消费交易的不必要的数据)作为可能的解决方案,AI可以引入诸如联邦学习等新的去中心化学习系统,或者引入新的数据分片技术来让系统更加高效。

安全性:即便区块链几乎不可能被攻击,但区块链更深的层和应用就没那么安全了(比如DAO、Mt Gox、Bitfinex等)。过去2年机器学习取得的不可思议的进展使得AI成为区块链极好的盟友来保障安全的应用部署,尤其是鉴于该系统架构的固定性;

隐私:拥有个人数据的隐私问题引起了对竞争优势的监管和战略性担忧。同态加密(直接对加密数据进行操作)、Enigma项目、Zerocash项目,都是可行的解决方案,这个问题跟前面的可扩展性和安全问题是紧密关联的,重要程度也是一样;

效率:德勤(世界四大会计事务所之一)估计区块链验证和共享交易的总运行成本大概是每年6亿美元左右。一个智能系统可能可以最终实时计算出特定节点成为第一个执行特定任务的节点的可能性,从让其他矿工有可能可以选择放弃针对该特定交易的努力,从而削减总成本。此外,即便存在某些结构性的约束,效率更好能耗更低也许也能降低网络时延,从而让交易更快;

硬件:矿工(未必是公司也可以是个人)把难以置信的金钱投入到专门硬件组件中。既然电力消耗一直都是关键问题,很多解决方案都被提了出来,未来还会引入更多。只要系统变得更加高效,其中一部分的硬件可能就会被转化(有时候是部分转化)为神经网络所用(挖矿巨头Bitmain正在这么做);

人才缺乏:这是信仰之跃,但同样地我们正在试图自动化数据科学本身,我看不出为什么我们无法创建可以创建新的分类账的虚拟代理(甚至影响和维护分类账);

数据:在未来当我们所有的数据都放在区块链上,公司可以直接向我们购买时,需要帮助来进访问授权,跟踪数据使用,通常还需要以计算机的速度弄清楚个人信息发生了什么事情,这正是智能机器的工作。

2.2区块链如何改变AI?

AI可能最终对区块链产生的影响。反过来看看区块链可能会对机器学习系统的发展产生什么样的影响?说得更仔细一点,区块链可以:

帮助AI解释自己(并让我们相信它):AI黑盒遭遇了可解释性的问题。有一个清晰的审计跟踪不仅可以提高数据的可信性,还可以提高模型的可信度,也为追溯机器决策过程提供了一条清晰的途径。

提高人工智能的有效性:安全的数据共享意味着更多的数据(和更多的训练数据),然后就会有更好的模型,更好的行动,更好的结果……以及更好的新数据。到头来网络效应是最重要的东西。

降低市场的准入障碍:区块链技术可以保护你的数据。那么为什么不能私下存储你所有的数据,或者也许出售这些数据呢?

首先,区块链将促进更干净、更有组织的个人数据的建立。其次,区块链会促进新市场的出现:1、比如数据市场(这个是比较容易实现的);2、比如模型市场(这个要有趣得多);3、甚至最后可能还会出现AI市场。因此,简单的数据共享和新的市场,再加上区块链数据验证一起,这些将提供更加顺畅的集成,从而降低小企业的进入门槛,缩小科技巨头的竞争优势。在降低进入门槛的努力中,实际上解决了两个问题,即提供更广泛的数据访问以及更有效的数据货币化机制;

增加对人工的信任:一旦部分任务将交给自动虚拟代理来管理,清晰的审计跟踪将可以帮助机器人相互信任(并且帮助我们去信任它们)。在有了分项数据以及协调决策,再加上有健壮的机制到达法定人数(与群体机器人和多代理场景高度相关)的安全手段之后,这最终还将增加机器与机器之间的交互和交易。

减少灾难性风险:DAO中编写的具有特定智能合约的AI只能执行那些动作,除此以外再无更多(那么它的行动空间也是受限的)。尽管AI跟区块链技术的交互能够带来诸多好处,但是还有一个大问题:

AI是诞生在一个开源的环境下的,在这样的环境下数据是真正的护城河。但随着这一数据的民主化以及软件的开源化,如何才能确保AI能取得成功并且不断发展呢?新的护城河又会是什么?现阶段我唯一的猜测是……人才。

2.3去中心化的智能公司

从事区块链和加密货币的初创企业有很多。不过这里我只对那些从事AI、区块链技术交叉(或者融合)的感兴趣,这些企业显然就不是很多了。这样的企业主要集中在旧金山和伦敦,但是在纽约、澳大利亚、中国以及欧洲国家也有例子。这类初创企业的数量的确是太少了,所以很难把它们进一步进行分类。通常喜欢试着去理解一组公司的底层模式及其对行业的影响和应用类型,但在这里鉴于数据点的数量太少了,是很难进行这样的分析的,简单地按照以下进行分类:

去中心化智能:TraneAI(以去中心化的方式训练AI);Neureal(点对点的AI超级计算);SingularityNET(AI市场);Neuromation(综合数据集生成和算法训练平台);AI Blockchain(多应用智能);BurstIQ(医疗保健数据市场);AtMatrix(去中心化机器人);OpenMined项目(在本地训练机器学习的数据市场);Synapse.ai (数据和AI市场);Dopamine.ai(B2B AI货币化平台)。

会话式平台:Green Running(家庭能源虚拟助手);Talla(聊天机器人);doc.ai(量化生物和医疗保健洞察)。

预测平台:Augur(集体智能);Sharpe Capita(众包情绪预测)。

知识产权:Loci.io(IP发掘和挖矿)。

数据溯源:KapeIQ(对医疗保健实体的欺诈检测);Data Quarka(事实核验);Priops(数据合规性);Signzy(KYC)。

交易:Euklid(比特币投资);EthVentures(对数字令牌的投资)。其他的(理论性)金融应用可参见Lipton(2017);

保险:Mutual.life(P2P保险),Inari(普通保险);

其他:Social Coin(市民奖励系统);HealthyTail(宠物分析);Crowdz(电子商务);DeepSee(媒体平台);ChainMind(网络安全)。

三、人工智能的发展前景

3.1人工智能的发展趋势

技术的发展总是超乎人们的想象,要准确地预测人工智能的未来是不可能的。但是,从目前的一些前瞻性研究可以看出,未来人工智能可能会向以下几个方面发展:模糊处理、并行化、神经网络和机器情感。

3.2人工智能的发展潜力巨大

人工智能作为一个整体的研究才刚刚开始,离我们的目标还很遥远,但人工智能在某些方面将会有大的突破。

(1)自动推理是人工智能最经典的研究分支,其基本理论是人工智能其它分支的共同基础。一直以来自动推理都是人工智能研究的最热门内容之一,其中知识系统的动态演化特征及可行性推理的研究是最新的热点,很有可能取得大的突破。

(2)机器学习的研究取得长足的发展。许多新的学习方法相继问世并获得了成功的应用,如增强学习算法、reinforcement learning(强化学习)等。也应看到,现有的方法处理在线学习方面尚不够有效,寻求一种新的方法,以解决移动机器人、自主agent、智能信息存取等研究中的在线学习问题是研究人员共同关心的问题,相信不久会在这些方面取得突破。

(3)自然语言处理是AI技术应用于实际领域的典型范例,经过A I研究人员的艰苦努力,这一领域已获得了大量令人瞩目的理论与应用成果。许多产品已经进入了众多领域。智能信息检索技术在Internet技术的影响下,近年来迅猛发展,已经成为了AI的一个独立研究分支。由于信息获取与精化技术已成为当代计算机科学与技术研究中迫切需要研究的课题,将A I技术应用于这一领域的研究是人工智能走向应用的契机与突破口。从近年的人工智能发展来看,这方面的研究已取得了可喜的进展。

3.3人工智能的展望

人类的智慧是无限的,科学技术的发展势必也是我们无法想象的,我们现在对将来人工智能的展望也是可能实现的,我们要对未来充满希望和对未来充满期待,我相信在未来不久,人工智能的研究必然取得突破性的进展。人工智能的研究一旦取得突破性进展,将会对信息时代产生重大影响,对人类文明产生重大影响。科学发展到今天,一方面是高度分化,学科在不断细分,新学科、新领域不断产生;另一方面是学科的高度融合,更多地呈现交叉和综合的趋势,新兴学科和交叉学科不断涌现。大学科交叉的这种普遍趋势,在人工智能学科方面表现尤其突出。由脑科学、认知科学、人工智能等共同研究智能的本质和机理,形成交叉学科智能科学。学科交叉将催生更多的研究成果,对于人工智能学科整体而言,要有所突破,需要多个学科合作协同,在交叉学科研究中实现创新。未来的美好需要我们共同的努力。

区块链和AI可以说是技术领域的两个极端方面:

一个是在封闭数据平台上培育中心化的智能;另一个则是在开放数据环境下促进去中心化的应用。然而,如果能找到正确的方式让这两项技术一起协作的话,总的正外部性(指社会收益大于个人收益)就能够在一瞬间放大,当然,由于这两大技术的融合,也对技术和伦理产生了影响。

财经自媒体联盟更多自媒体作者

新浪首页 语音播报 相关新闻 返回顶部